
Managing Outsourcing – Why You Really Should
by Campbell Cairns

TransForge corp.

The cleaner wrasse nibbles parasites off other
fish. The sabre tooth blenny mimics the wrasse
but bites a chunk of flesh from the unfortunate
fish that allows it close enough.

Like the sabre tooth blenny, outsourcing might
advertise a mutualistic relationship but deliver a
parasitic one.

Managing complex technical projects requires
expertise and often implies a steep learning curve in
unfamiliar technologies, some of which require years
of advanced study allied with innate aptitude. In
competitive business environments, where failure
and success leverage vast amounts of money it is
generally considered safer and easier to employ a
large consulting house with the required skills than
managing complex projects in-house — especially if
the project is somewhat divorced from core business
and expertise. Middle and upper-level management
have every incentive to employ external
consultancies rather than manage such projects
themselves; they avoid many of the penalties
associated with failure while increasing the scope of
their authority without the burden of responsibility.

Reinforcing this perception was a wave that swept
through companies about ten years ago: Each
element of a company was to be financially isolated
and profitable — if it wasn't essential or profitable it
was dismantled, sold, or outsourced.

The financial restructuring implied expensive
changes to legacy software systems, and
management became acutely aware that the code
they had taken twenty years to develop was inferior
to many of the generic packages available.
Programmers at that stage were highly paid and for
tax reasons many of the them were already operating
as ‘consultants’. It made good financial sense to
outsource software maintenance, development and
operations. A vast outsourcing industry evolved
about developing, maintaining, and servicing code.

Since then things have changed. Almost every
system today has a microprocessor at its heart that
communicates with other systems. Its functions and
behavior are largely resident in its software –- its
software could be said to serve as its identity. This
‘identity code’ has become kernel to all systems —
even ostensibly non software-based systems.

It has become relatively easy to create and
manipulate identity code: Standard architectures,
integrated development environments, unit testing,
and interactive languages have simplified code
development enormously. The academic theory at
the heart of good software is becoming progressively
less critical as it becomes encapsulated in standards.
Processing power has ceased to be a significant
constraint and cross-platform languages and systems
are talking seamlessly with each other. Encapsulated
code can easily be replaced or improved without
major system surgery. Large business systems have
become either ‘open’ or ‘configurable’ enough to be
installed by third-party implementors. Engineering
and re-engineering a system has become largely a
matter of writing a few lines of code.

While the benefits of outsourcing depend largely on
context, the penalties are best understood from the
vantage of a consultancy’s modus operandi:

• Identify the characteristics of the host
management structure, and interface at the
highest possible level

• Identify key people in the host and co-opt them

• Identify problem areas and make them time-and-
expense extensions to any contract. Subcontract
experts for these problem areas

• Make sure that there is an escape clause in case
the project tanks

This procedure ensures that the consultancy
maximizes its influence while minimizing its exposure

In-house technical expertise must be
developed if a company wishes to control

its own identity.

and accountability. Ungoverned, a consultancy will
extended the scope of a project until the project
bears little resemblance to its original intent. While
this analysis might appear somewhat cynical, it is
merely the natural evolution of a service industry if
allowed unregulated access to client systems.
Unfettered and unconstrained, a project can
consume so much money and expand so far beyond
its original scope that it becomes its own raison
d'etre.

Seen in this light the current trend towards
outsourcing software development is a dangerous
one, for the software employed by a company
constitutes a large part of its corporate identity, which
can lie in unexpected places. Where one company’s
identity might lie embedded in a huge enterprise
package, another’s might lie in a simple spreadsheet.

While a host company might believe it understands
and controls its own functional identity, if it doesn’t

understand the technical mechanisms underlying that
identity it cannot manipulate them. If a company
cannot manipulate its identity it cannot adapt
optimally to change or opportunity.

A company should therefore aim to build the in-house
management skills and technical base it requires to
create, maintain and manipulate its own identity
systems. Some software is perhaps better entrusted
to other more expert hands, and consultancies
certainly have a role to play, but, for the reasons
outlined above, that role must be technically
managed by the host. This imperative extends
beyond software, but software is the most accessible
and malleable component of most companies.

In summary, in-house technical expertise must be
developed if a company wishes to control its own
identity.

.

